Math 2FM3, Tutorial 1

Sep 16th 2015

TA Information

- Name: Chengwei Qin (PhD candidate in Stats)
- E-Mail: qinc4@math.mcmaster.ca
- Webpage: http://ms.mcmaster.ca/~qinc4
- Office hours: 10am to 12pm, Friday, HH401

Preliminary

- Compound Interest:
$A(t)=A(0)(1+i)^{t}$
- Simple Interest:
$A(t)=A(0)(1+i t)$
- Present Value:
$A(0)=A(t) v^{t}, v=(1+i)^{-1}$ is present value factor

Ex 1.1.2

- 2500 is invested. Find the accumulated value of the investment 10 years after it is made for each of the following rates:
(a) 4% annual simple interest;
(b) 4% effective annual compound interest;
(c) 6-month interest rate of 2% compounded every 6 months;
(d) 3-month interest rate of 1\% compounded every 3 months.
(a) $A(0)=2500, t=10, i=4 \%$

$$
A(t)=A(0)(1+i t)=2500 *(1+4 \% * 10)=3500 .
$$

(b) $\mathrm{A}(\mathrm{t})=\mathrm{A}(0)(1+\mathrm{i})^{\mathrm{t}}=2500^{*}(1+4 \%)^{10}=3700.61$
(c) $A(0)=2500, t=10 / 0.5=20, i=2 \%$

$$
A(t)=A(0)(1+i)^{t}=2500 *(1+2 \%)^{20}=3714.87
$$

(d) $A(0)=2500, t=10 / 0.25=40, i=1 \%$

$$
A(t)=A(0)(1+i)^{t}=2500 *(1+1 \%)^{40}=3722.16
$$

Ex 1.1.10

- (a) At an effective annual interest rate of 12%, calculate the number of years (including fractions) it will take for an investment of 1000 to accumulate to 3000 .
- (b) Repeat part (a) using the assumption that for fractions of a year, simple interest is applied.
- (c) Repeat part (a) using an effective monthly interest rate of 1%.
- (d) Suppose that an investment of 1000 accumulated to 3000 in exactly 10 years at effective annual rate of interest i. Calculate i .
- (e) Repeat part (d) using an effective monthly rate of interest j. Calculate j.
(a) $A(0)=1000, A(t)=3000, i=12 \%$

Since $(1+i)^{t}=A(t) / A(0)$,
take "In" we have $t^{*} \ln (1+i)=\ln A(t)-\ln A(0)$,
then $t=(\ln A(t)-\ln A(0)) / \ln (1+i)=9.694$
(b) The integer part is 9 , then we use compound interest for the first 9 years and simple interest for the last year.
$\mathrm{A}(\mathrm{t})=\mathrm{A}(0)(1+\mathrm{i})^{9}\left(1+\mathrm{i}^{*} \mathrm{~s}\right)=3000, \mathrm{~s}=0.6819$
$\mathrm{t}=9+0.6819=0.6819$
(c) i=0.01,
$1000(1+0.01)^{\mathrm{t}}=3000$
$\mathrm{t}=110.41$ months
(d) $(1+i)^{t}=A(t) / A(0)$
$\mathrm{i}=(\mathrm{A}(\mathrm{t}) / \mathrm{A}(0))^{1 / \mathrm{t}}-1=(3000 / 1000)^{1 / 10}-1=0.1161$
(e)
$j=(A(t) / A(0))^{1 / t}-1=(3000 / 1000)^{1 / 120}-1=0.009197$

Ex 1.2.1

- Bill will receive $\$ 5000$ at the end of each year for the next 4 years. Using an effective annual interest rate of 6%, find today's present value of all the payments Bill will receive.
- $v=1 /(1+i)=1 /(1+6 \%)=0.9434$ present value $=5000 v+5000 v^{2}+5000 v^{3}+$ $5000 \mathrm{v}^{4}=17,325.53$

Ex 1.2.4

- What is the present value of 1000 due in 10 years if the effective annual interest rate is 6% for each of the first 3 years, 7% for the next 4 years and 9% for the final 3 years?

First 3 years : v1=1/(1+6\%)=0.9434
Next 4 years: v2=1/(1+7\%)=0.9346
Final 3 years: $v 3=1 /(1+9 \%)=0.9174$

Then the present value is
$1000(v 1)^{3}(v 2)^{4}(v 3)^{3}=494.62$

